Eur. Phys. J. D 24, 197-202 (2003)
DOT: 10.1140/epjd /e2003-00175-8

THE EUROPEAN
PHYSICAL JOURNAL D

Phase transformations in highly excited clusters

A. Chernomoretz and C.O. Dorso?

Departamento de Fisica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Pabell6n 1 Ciudad Universitaria, 1428 Buenos Aires, Argentina

Received 10 September 2002

Published online 3 July 2003 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2003

Abstract. In this communication we analyze the behavior of excited drops that undergo fragmentation. We
focus our attention on two scenarios: in the first one the system is free to expand, while in the second one
it is confined inside a spherical volume. It is shown that the caloric curve of free expanding systems does
not display a vapor branch. In the case of constrained ones, they behave as undergoing a first order phase
transition at low densities while as a second order one at high densities. The transition from liquid-like to
vapor-like behavior is signaled both by the caloric curves and thermal response functions.

PACS. 64.60.Qb Nucleation — 64.70.Fx Liquid-vapor transitions — 31.15.Qg Molecular dynamics

and other numerical methods

1 Introduction

Since the advent of accelerators powerful enough to ex-
plore the behavior of nuclear systems at intermediate en-
ergies, a new field of research has been opened: the ther-
modynamics of small systems that undergo fragmentation.
This problem has emerged since the first suggestion that a
highly excited nuclear system might be undergoing a sec-
ond order phase transition. Such hypothesis was brought
up by the pioneering work of the Purdue group in which
a power law was fitted to the mass spectra in collisions
of highly energetic protons against heavy nuclei [1]. Since
then a lot of theoretical efforts along with many exper-
iments explored this energy range trying to characterize
the occurrence of a phase transition taking place in finite
systems [2-6].

In connection with this, our group has performed a
series of works to disentangle the microscopic description
of fragmentation process taking place in highly excited
classical drops [7-9].

In this communication we explore the properties of
highly excited classical drops which are either free to ex-
pand and fragment or are confined inside a spherical vol-
ume. We will show that physically meaningful fragments
can be defined using stability arguments. Such a defini-
tion, when applied to expanding systems, results in the
finding that fragments are formed very early in the evo-
lution when the system is still strongly interacting. This
allows us to define a time of fragment formation at which
local equilibration is observed. It is then possible to define
a caloric curve (CC) as the functional relationship of the
system’s temperature as a function of its excitation en-
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ergy. We found that this CC is characterized by the fact
that exhibits no vapor branch.

On the other hand, when we focus our attention at
the constrained case, we find that the respective caloric
curve displays a vapor branch, produced by the presence
of the walls which force the system to attain global equi-
librium. We show that in this case the caloric curves are
strongly dependent on the density, showing for strongly di-
luted cases, negative specific heats. In addition, we show
the resulting equation of state for such a system.

2 The model

The system that we study is composed by excited drops
made up of particles interacting via a 6-12 Lennard Jones
(LJ) potential, which reads:

Vir)=
0 >
(1)
We took the cut-off radius as r. = 30. Energies and

distances are measured in units of the potential well
(e) and o, respectively, while the unit of time used is:
to = y/02m/48¢. We integrated the set of classical equa-
tions of motion using the well-known Verlet algorithm [11],
taking t;,: = 0.002tg as the integration time step. Ini-
tial conditions were constructed by cutting spherical drops
of 147 particles out of an equilibrated system composed
of cells with 512 particles and periodic boundary condi-
tions [9]. Finally, the velocities of the drop particles were
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slightly rescaled in order to fix the initial drop energy to
the desired value.

A broad energy range was used to have the asymp-
totic mass spectra of the fragmented drops for the uncon-
strained system change from a “U shaped” pattern to an
exponentially decaying one. Somewhere in between this
two extremes, a power law like spectrum can be found.

In order to study the consequences of imposing a finite
volume constraint to our system we used a spherical con-
fining “wall”. The considered external potential behaves
like Vipair ~ (1 — rwan) 12 with a cut off distance re = o
where it smoothly becomes zero along with its first deriva-
tive. A rather broad range of values for r,,,; was consid-
ered to explore the system behavior at different densities.
To check the suitability of this definition we compared the
results against the ones obtained with an exponentially
decaying potential wall, finding no differences.

Inside this potential, a highly excited drop was initial-
ized in the way already described, and the corresponding
equations of motion were integrated. Once the transient
behavior was over we performed a microcanonical sam-
pling of particle configurations every 5ty up to a final time
of 140000t.

3 Fragment recognition

When analyzing the free-to-expand system that undergoes
fragmentation, which is a non-stationary process, the de-
termination of the time at which fragments are formed
becomes one of the key ingredients. To accomplish this
task one can use a simple and intuitive cluster definition,
that is based on correlations in configuration space: given
a particle ¢ and a cluster C'

ieC<=3[{el)/|ri—rj| <rg

with r, a parameter called clusterization radius (in this
work we used 7. = reyt = 30). The recognition algorithm
introduced by this definition is known as minimum span-
ning tree (MST) fragment recognition method.

In [10] it was shown that in the analysis of the frag-
mentation of free expanding systems, a different recog-
nition method, the so-called Early Cluster Recognition
Algorithm (ECRA), outperforms the MST clusterization
algorithm. This is so because it finds the asymptotic frag-
mentation pattern, in phase space, at early stages in the
evolution when fragments are still not observable in con-
figuration space. At that time the system still looks like a
rather compact piece of excited matter. Instead of being
defined through a proximity criteria, the ECRA fragments
are associated with the set of clusters {C;} for which the
sum of the fragment internal energies attains its minimum
value:

{Ci} = min{c,} [E{ci} =2 Egn}

EC

int —

STK Y Vi (2)

JeC; J,k€Cij<k
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where the first sum in equation (2) is over the clusters
of the partition, K§™ is the kinetic energy of particle j
measured in the center of mass frame of the cluster which
contains particle j, and V;; stands for the inter-particle
potential. We dub the partition found by ECRA as the
most bound density fluctuation in phase space (MBDF),
and we define as time of fragment formation (777) the
time at which the MBDF attain microscopic stability [9].
In this way 7y is related to the time at which the system
switches from a regime dominated by fragmentation to
one in which the dominant decay mode is evaporation of
light aggregates (mostly single particles) by the excited
fragments. The ECFM-ECRA outperforms the MST not
only in terms of the time at which fragments are detected
but also in its capability of unveiling the nature of the
fragmentation process. It shows that fragments are formed
in phase space as a consequence of correlations in both ¢
space and p space.

In order to illustrate the characteristics of ECRA
against MST in a pictorial way we show in Figure 1 the
result of the ECRA and MST analysis for an exploding
disk of 100 LJ particles. It can be seen that the asymp-
totic fragments are recognized much earlier by ECRA than
by MST. In this particular case the 7;¢ corresponds to a
time between the second and third panels (from left to
right) while MST reaches microscopic stability at around
the fourth panel.

4 Expanding systems

Once the time of fragment formation is determined, it is
possible to calculate several properties of the system at
fragmentation time. For this purpose the expanding sys-
tem is decomposed in concentric shells and the mean ra-
dial velocity for each one of them is calculated. It has
been found that the expansion is almost linear with the
distance to the center of mass of the system, and that a
local temperature can be defined based on the fluctuations
of the velocity around the local expansive collective mo-
tion. This is so because local velocity fluctuations around
the local expansion velocity are isotropic [9].

It has also been shown that, while at 747 most of the
system is still interacting, the local temperature of the
inner shells attain a rather constant value that can be
consistently considered as the temperature of the system
at fragmentation time. In this way we could calculate the
corresponding caloric curve, which we define as the func-
tional relationship between the temperature of the system
at fragmentation time and the energy of the system [see
Fig. 2]. It can be seen that this CC has the remarkable fea-
ture that it does not display a vapor branch but instead,
after displaying a bump, it stabilizes for high energies.
In the same figure we show another curve (open squares)
which is proportional to the total kinetic energy (includ-
ing the radial collective motion). It can be seen that the
collective motion begins to be dominant at about £ = le.
The presence of the expansion is responsible for the ab-
sence of a vapor branch, acting as an effective heat sink.
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Fig. 1. In this figure, we show the results of the analysis of a given highly excited disk of 100 interacting LJ particles which
undergoes fragmentation as a function of time. Different levels of gray denote clusters. The configurations displayed on top
correspond to MST analysis while the ones at the bottom correspond to ECRA analysis. It can be seen that fragments are
recognized by ECRA much earlier that by MST. In this particular case the time of fragment formation according to ECRA
(14£) is located between the second and third configuration displayed.
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Fig. 2. In this figure, we show, in the upper panel, the caloric
curve of the free to expand system (full circles) together with
% of the total kinetic energy per particle (open squares). The
corresponding thermal response function, TRF, is shown in the
lower pannel. The anomalous loop displayed by the CC induces
a negative branch in the TRF. It can be seen that the system
CC, calculated at fragmentation time, does not display a vapor
branch. This is due to the presence of the collective motion,
that becomes dominant for energies above ~ 1.0e.

In the lower panel we show the associated thermal re-
sponse function (TRF), which is defined as:

or\ ! 928\
TRF = (EE) ::(-TQEEE) - (3)

It can be seen that this magnitude becomes negative in
a region limited by two poles. The first one signals the
entrance in the fragmentation regime and the second is
related to the leveling off in the CC, at high energies, due
to the development of the radial flux.

5 Constrained system

We now focus our attention in highly excited drops con-
strained inside spherical volumes. In this case the system
will attain equilibrium and the MD simulation will sam-
ple the corresponding microcanonical ensemble. We will
explore several observables to characterize the thermody-
namical and dynamical behavior of the system. Namely,
the behavior of caloric curves, specific heats, kinetic en-
ergy fluctuations and fragment mass distributions.

Due to the fact that the system is at equilibrium the
temperature of the system is simply given by

2

ﬂm:aNfU

(K) - (4)

In Figure 3 we show in the upper panel caloric curves
for different densities (see caption for details). It can be
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Fig. 3. In the upper panel of this figure we show caloric
curves for excited 147 LJ particles contained in a spherical
volume. Three densities are considered p = 0.0260 2 (circles),
p = 0.05507% (triangles) and p = 0.1003(squares). It is seen
that for the biggest constraining volume the caloric curve dis-
plays a loop. As the size of the constraining volume is reduced
the caloric curve evolves into a one that only displays a change
of slope. In the lower panel we show the corresponding TRF
for p = o7 (full line), p = 0% (dotted) and p = o~ 3(dash
dotted). It can be seen that the TRF attains negative values
for the caloric curves that display a loop. As the density is in-
creased the loop disappears and the TRF displays a maximum.

immediately seen that the curves show very different be-
havior as a function of the size of the constraining vol-
ume. In particular at the lowest density a loop can be
observed. This loop vanishes, as density is increased, and
is replaced by a slope change which fades away when the
density is further increased. It should be noticed that in
opposition to the caloric curve for a free expanding sys-
tem (Fig. 2), a linearly increasing temperature for high
energies is present (this is usually referred to as the vapor
branch). In the lower panel we show the associated ther-
mal response function. It is clear that when the caloric
curves displays a loop, the TRF will be characterized by
the presence of a region with negative values, limited by
two poles. This unusual behavior of the TRF is character-
istic of non extensive systems [4,12-14]. It is also worth
noticing that this behavior has also been found in the free
to expand case. As the density is increased and the loop
in the CC disappears, the two poles converge into a sin-
gle maximum (due to finite size effects that preclude the
appearance of divergences).

In order to further explore the origin of such a be-
havior in the caloric curve, we make use of the already
described fragment recognition algorithms. In this sense
we first use the MST methodology, which only takes into
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Fig. 4. In this figure we show the results of calculating the
largest cluster using the MST fragment recognition algorithm
for p = 0.100~3 (upper curve), p = 0.0260 2 (lower curve).
We see that at rather high densities, for which the caloric curve
does not display a loop, the maximum fragment comprises most
of the mass at all energies. On the other hand, when the size
of the constraining volume is big enough to allow the caloric
curve to display a maximum, the size of the biggest MST clus-
ter is a decreasing function of the energy. This means that
in this low density case the system fragments in well defined
configurational clusters and as such, true surfaces a re formed.

account spatial correlations. In Figure 4 we show the size
of the maximum MST cluster as a function of the energy
for two densities. It can be seen (see figure caption for de-
tails) that at densities for which the loop is not present the
maximum MST cluster comprises almost all of the mass of
the system. On the other hand at low densities the maxi-
mum MST cluster is a decreasing function of the energy.
These two results clearly show that for that densities at
which a loop can be found the system is configurationally
fragmented and, as such, surfaces are formed. This is not
the case when the density is high enough.

It is then of interest to explore the high density region
with the ECRA methodology. When this is done a rich
variety of ECRA-fragment spectra is found. In Figure 5
we show ECRA fragment spectra for p = 0.102 and for
three energies £ = —0.5,0.0. and 0.9 in units of €. We can
see that, even thought there is only one MST cluster that
comprises all of the mass, the displayed ECRA spectra go
from “U-shaped” to exponentially decaying ones, and that
in between this two extremes a power law spectra can be
found. The same results can be obtained for every density,
i.e. power laws of ECRA fragments can be obtained at all
densities for a peculiar energy value that we will denote
as E7.

This feature can be further studied by extracting the
corresponding critical exponents from the ECRA-mass
spectra [15]. For this purpose we use the following tech-
niques: first we assume that the fragment mass spectra is
properly described by

na=qA " f(2)

with A the mass of the fragment, 7 a critical exponent
and f(z) a scaling function with z = €A?. (f(z) has the
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Fig. 5. In this figure, we show ECRA fragment mass spectra
for a system at p = 0.10~> and at three values of the energy,
namely £ = —0.5¢ (open circles), F = 0.0e (full triangles),
E = 0.9¢ (open squares). At this density the system forms
just one cluster according to MST algorithm. But in phase
space the MBDF in phase space show a rich set of patterns.
In fact the ECRA fragment mass spectra go from “U-shaped”
to exponentially decaying. For E = 0.0e a power law can be
fitted.

property that f(0) = 1.) On the other hand e is the dis-
tance from the critical point which in this case is taken
as € = (E, — E), with E the energy. Following the pro-
posed scaling assumption, it is then immediate that at
the critical point the mass spectrum follows a power law
distorted by finite size effects. Moreover, it can be shown
that for a “true” critical behavior, 7 satisfies the following
relation 2 < 7 < 3 [16]. In order to calculate this quan-
tity we look for that mass distribution that is best fitted
by a power law once the biggest fragment has been ex-
cluded from each event. The fitting is to be done taking
into account that the normalization constant ¢ is given by
qo =1/ 4 A7 [17] which means that this is a one pa-
rameter fit. The results of such a procedure are displayed
in the upper panel of Figure 6. It can be seen that for
densities above p = 0.1, the value of 7 converges to the
accepted valued for 3D-Ising universality class. We then
calculate the critical exponent v which is related to the
second moment of the distribution My(e) = > A%n4 o
I’y |e|”7. This calculation is performed by the methodol-
ogy of “y — matching” [17].

In this case the value of the critical energy is left as
a free parameter and it is varied until the liquid and the
vapor branch of the spectra are both fitted at the same
time by a unique value of v. The corresponding results for
~ are displayed in the lower panel of Figure 6. We can see
that v converges to the accepted values for the 3D-Ising
universality class for p > 0.35073. All these results are
summarized in the following table.

At this point we can gather all the results obtained so
far for the constrained system and construct the equation
of state of our system. In Figure 7 we show the relation
between the temperature T(E;) of the system and the
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Fig. 6. In this figure, we show the values of the critical ex-
ponents 7 (upper panel) and 7y (lower panel). It can be seen
that the first one converges to the 3D-Ising universality class
(denoted by the dashed horizontal line) for densities larger

than p = 0.100 3, while the second does so for densities above
p=0.350"">.

Table 1. In this table, we summarize the main features of
the thermal response functions (TRF), and critical exponents
values (7 and «v) corresponding to the three density regions
defined in Figure 7.

Density (0%) TRF T 0
p < 0.05 can be negative 7>3 too small
0.05 < p £0.35 maximum for p < 0.1 7~/2.2 too small
p > 0.35 no maximum Tx22 =13

density. The figure is divided in three regions, region A
corresponds to the low density limit, where the caloric
curve displays a loop and the calculated values of the crit-
ical exponents are far away from the ones corresponding
to 3D-Ising universality class. In this region the TRF be-
comes negative and is limited by two poles. The strongly
diluted system undergoes a first order phase transition
across the T[E7(E)] line, and scale free ECRA mass dis-
tribution, found at EJ, appears as a consequence of the
finite size of the system.

In region B the system has become dense enough such
that the presence of internal surfaces in configurational
space is severely precluded (i.e. the biggest MST cluster
comprises almost all the mass). In this region, for each
density value, the exponent 7 of the ECRA-mass spectra
at E? is consistent with the one corresponding to 3D-

p
Ising universality class. On the other hand the value of
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Fig. 7. In this figure, we show the resulting EOS for a con-
strained 147 drop of LJ particles obtained from the phase space
correlation analysis. Three regions have been defined. In re-
gion A the size of the constraining volume is small enough as
to allow the system to fragment in configurational space. The
displayed curve corresponds to the values of T at which for a
given value of p the best fitted power laws are found. As stated
in Table 1 (see text) the critical exponents associated to this
power laws are too small. In region B (intermediate densities),
the system can no longer fragment in configurational space.
The curve signals the region in which the best fitted power
laws a found. They also correspond to the location of the max-
imum in the TRF (for p < 0.1073). Good values of the critical
exponent 7 are found. But v exponent is too low. Finally, re-
gion C is characterized by the fact that the caloric curves are
featureless (neither a loop nor a slope change were detected)
In this region the best fitted power laws are characterized by
good values of both 7 and 7.

the corresponding « exponent is too low. At T'(E}), for

p < 0.1073, the TRF attains a maximum.

Finally, in region C, at the line T'(E7), both 7 and v
critical exponents are consistent with the 3D-Ising univer-
sality class. In this region no maximum in the TRF could
be found.

6 Conclusions

In this work we have explored the dynamical and ther-
modynamical properties of highly excited finite Lennard
Jones clusters that undergo fragmentation. One of the
main tools used all along this work is the ECFM which
allows to find the most bound partition in phase space.
When used in unconstrained explosive events it allows
to calculate the time of fragment formation and it has
been found that at this time a local equilibrium scenario
is the correct one. By calculating the temperature of the
system at this time we have been able to construct a CC
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which does not present a vapor branch but that becomes
constant for high energies. In these systems the TRF at-
tains negative values. When we extend our calculation to
constrained systems, we find that the expected behavior
for finite systems (nonextensive) is fulfilled, the CC dis-
play a loop and negative TRF but only for densities low
enough to allow the system to develop fragments in coordi-
nate space. As soon as the constraining volume surpasses
a given threshold, the CC only displays a change of slope.
By applying ECRA to the constrained configurations a
novel EOS, based exclusively on morphological features of
the system in phase space, can be established. According
to the values obtained for the critical exponents 7 and =,
three regions are recognized, low density (loop in CC, neg-
ative TRF, Power laws with “wrong” 7 and ), medium
density (the CC shows a slope change, correct value of 7
exponent and wrong - exponent for the best power law
fitted ECRA mass spectrum) and high density (almost
featureless CC, correct values for the 7 and 7 exponents
for the best power law fitted ECRA mass spectrum).
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